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Inverse anticipating chaos synchronization
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We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic
system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in
delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded
time-delay systems.
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Chaos synchronization@1# is of fundamental importance
in a variety of complex physical, chemical, and biologic
systems@2#. Synchronization of coupled chaotic system
eliminates some degrees of freedom of the coupled sys
and so produces a significant reduction of complexity. T
occurrence of synchronization between elements of a la
system allows significant simplification of computational a
theoretical analysis of the system.

Time-delayed systems are ubiquitous in nature, tech
ogy, and society because of finite signal transmission tim
switching speeds, and memory effects@3#. Therefore the
study of chaos synchronization in these systems is of con
erable practical significance. Because of their ability to g
erate high-dimensional chaos, time-delay systems are g
candidates for secure communications based on chaos
chronization@4#. Time-delay systems can also be conside
as a special case of spatio-temporal systems@5#.

In this paper we report a different type of synchronizatio
inverse anticipating synchronization, where a time-dela
chaotic systemx drives another systemy in such a way that
the driven system anticipates the driver by synchronizing
its inverse future state:x(t)52yt[2y(t2t) or equiva-
lently y(t)52x(t1t) with t.0. Anticipating synchroniza-
tion x5yt was discovered by Voss@6# and has recently bee
the subject of experimental demonstration using exte
cavity laser diodes@7#. A key result of the present paper
the demonstration of an intimate connection between th
two distinct phenomena which arise when different con
tions are met. The explicit prescription of the conditions
observing these distinct phenomena offers, first of all,
triguing opportunities for constructive intervention in the d
namical evolution of chaotic systems by switching betwe
the two forms of synchronization.

We investigate inverse anticipating synchronization
tween two coupled systems for the cases of a single d
time and two characteristic delay times. In the latter case
delay time in the coupling is different from the feedba
delay time within the coupled systems themselves.

We define inverse anticipating synchronization as follow
The driver system

dx

dt
52ax1 f ~xt! ~1!
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synchronizes with a driven system

dy

dt
52ay2 f ~x! ~2!

on the inverse anticipating synchronization manifold

x52yt . ~3!

In order to obtain this result we introduce the error sign
D5x2(2yt)5x1yt . Then from Eqs.~1! and~2! it follows
thatdD/dt52aD. In many representative cases, chaos s
chronization can be understood from the existence of a
bal Lyapunov function of the error signals@6,8#. By analyz-
ing the Lyapunov functionL5 1

2 D2 we obtain that fora
.0 the inverse anticipating synchronization manifoldx
52yt is globally attracting and asymptotically stabl
Throughout this paper, to enhance the accessibility of
presentation, we confine ourselves to the demonstratio
principles using specific examples from different areas
physics.

First we consider inverse anticipating synchronization
the following coupled Ikeda systems with a single del
time:

dx

dt
52ax2b sinxt ,

dy

dt
52ay1b sinx, ~4!

where a.0, b.0. Anticipating synchronization in the
coupled Ikeda systems was studied in@6#. The Ikeda model
plays an important role in electronics and physiological st
ies @6#. This model was introduced to describe the dynam
of an optical bistable resonator and is well known for dela
induced chaotic behavior, e.g.,@6,9# and references therein
Physicallyx is the phase lag of the electric field across t
resonator and thus may clearly assume both positive
negative values;a is the relaxation coefficient;b is the laser
intensity injected into the system;t is the round-trip time of
the light in the resonator. Using the error dynamics appro
given above one finds thatx52yt is the inverse anticipating
chaos synchronization manifold. Numerical simulations fu
support the analytical approach. The driver system beha
chaotically for, e.g.,t51, a55, b520. We perform simu-
lations of Eq. ~4! by employing an Runge-Kutta-Fehlber
algorithm @10#. Figure 1 shows the time series of the driv
x(t) ~solid line! and driven systemy(t) ~dotted line!.
r-
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Inverse anticipating chaos synchronization can also
found in systems with two characteristic delay times: a ti
delay t1 in the coupled systems themselves and a coup
delay timet2 between the systems. Consider the followi
unidirectionally coupled driver~x! and response~y! systems
where feedback and coupling delayst1 andt2 are different.

dx

dt
52ax2b sinxt1

,
dy

dt
52ay1b sinxt2

. ~5!

We find thatx52yt12t2
is the inverse anticipating chao

synchronization manifold for Eq.~5! with anticipating time
t12t2 (t2,t1), as the errorD5x1yt12t2

obeys the fol-

lowing dynamics:dD/dt52aD.
As another example with two characteristic delay tim

we consider the following delay-coupled Ikeda model@11#:

dx

dt
52ax1m1 sinxt1

,

dy

dt
52ay1m2 sinyt1

1m3 sinxt2
, ~6!

wherem1 , m2 , andm3 are constants. One finds that und
the condition

m25m11m3, ~7!

Eqs. ~6! also admit the inverse anticipating synchronizati
manifold x52yt12t2

. This follows from the dynamics o

the errorD5x1yt12t2
,

dD

dt
52aD1m2 cosxt1

Dt1
. ~8!

FIG. 1. Numerical simulation of two coupled Ikeda equation
time series of the driverx(t) ~solid line! and driven systemy(t)
~dotted line!. After transients~about one time unit!, the driven sys-
tem’s trajectory is inverted and shifted one time unit to the left. T
parameters of the Ikeda model aret51, a55, b520. Dimension-
less units.
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The sufficient stability condition of the trivial solutionD
50 of Eq. ~8! can be found from the Krasovskii-Lyapuno
functional approach for the time-delay systems@3,12,6#: a
.um2u. The condition~7! can be considered as the existen
condition for inverse anticipating chaos synchronizationfor
the unidirectionally coupled modified Ikeda model. It
noted that the analogous existence condition foranticipating
chaos synchronization@11# x5yt12t2

is m15m21m3 . We
also derive the sufficient stability condition for anticipatin
synchronizationa.um2u, which coincides with the sufficien
stability condition for inverse anticipating synchronizatio
Stability conditions found above only hold locally, as Eq. (
is valid for small D; in other words the trivial solutionD
50 of Eq. (8) is only locally stable.A stability condition
derived from the Krasovskii-Lyapunov approach is a su
cient condition: it assures synchronization for a coupling r
~strength! estimated from the stability condition, but does n
forbid the possibility of synchronization with smaller cou
pling strengths@12#.

We would like to emphasize that practical realization
inverse anticipating synchronization in coupled Ikeda s
tems~6! is rather easily achieved, i.e., the parameters valu
e.g.,a55, m15218, m2523, m3515 satisfy both the ex-
istencem25m11m3 and stability a.um2u conditions for
the inverse anticipating synchronization manifold. Figure
shows numerical simulations of system~6! for the above-
mentioned values of parameters, and fort152 andt251:
the time series of the driverx(t) ~solid line! and driven sys-
tem y(t) ~dotted line!.

We also point out that the existence condition for inve
anticipating synchronization in system~6! coincides with the
existence condition for anticipating synchronization in t
system obtained from Eq.~6! by replacingy by 2y and vice
versa. In other words, both system~6! and the system ob
tained from it after inversion~y by 2y or x by 2x! exhibit
both inverse, and ‘‘conventional’’ anticipating synchroniz

:

e

FIG. 2. Numerical simulation of system~6! for a55, m1

5218, m2523, m3515, and fort152 andt251: time series of
the driver x(t) ~solid line! and driven systemy(t) ~dotted line!.
After transients, the driven system’s trajectory is inverted a
shiftedt12t251 time unit to the left. Dimensionless units.
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tion under the indicated existence conditions.
Next we consider complete synchronization

x5y ~9!

between master and slave systems~6!. Let us assumet1
5t2 . Then one finds that under the conditionm15m21m3
Eqs. ~6! also admit the complete synchronization manifo
x5y. This conclusion follows from the dynamics of the e
ror D5x2y: dD/dt52aD1(m12m32m2)sinxt1

valid

for small D. Thus, the trivial solution of this equationD
50 is only locally stable for positivea. We observe, there
fore, that by changing the feedback, and/or the coup
strengths and feedback delay time one can make transi
between anticipating, inverse anticipating, and complete s
chronizations. The significance of this opportunity is und
lined by the relative ease for practical implementation of
relevant phenomena using such conveniently operated t
delayed systems as external cavity laser diodes. Studying
possibility of inverse anticipating synchronization in chao
semiconductor lasers with optical feedback is given ad
relevance due to the potential for application in secure o
cal communications@4#.

External cavity laser diodes offer an opportunity for a
cessing inverse anticipating synchronization, which may
manifested in an inversion of the phase of the laser opt
field. An appropriate framework for treating the evolution
the electric field of external cavity laser diodes is provid
by the widely utilized Lang-Kobayashi equations, see, e
@11#. Suppose that a master laser is described by the e
tions

dE1

dt
5g1~11ia1!~G121!E1~ t !1k1E1~ t2t1!

3exp~2iv1t1!,

dN1

dt
5

j 12N12G1uE1u2

tn1
, ~10!

and is coupled unidirectionally with a slave laser describ
by the equations

dE2

dt
5g2~11ia2!~G221!E2~ t !1k2E2~ t2t1!

3exp~2iv1t1!1k3E1~ t2t2!exp~2iv1t2!,

dN2

dt
5

j 22N22G2uE2u2

tn2
, ~11!

where E1,2 are the slowly varying complex fields for th
master and slave lasers, respectively;N1,2 are the normalized
carrier densities;g1,2 are the cavity losses;a1,2 are the line-
width enhancement factors;G1,2 are the optical gains;k1,2
are the feedback levels;k3 is the coupling rate;v1 is the
optical frequency without feedback;t1 is the round-trip time
in the external cavity;t2 is the time of flight from the maste
laser to the slave laser, i.e., the coupling delay time;j 1,2 are
the normalized injection currents;tn1,n2 are the carrier life-
01720
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times. For identical lasers, inverse anticipating synchron
tion solutions of Eqs.~10! and ~11!

E152E2,t12t2
, ~12!

exist if

k25k11k3 . ~13!

Indeed under condition~13!, which is the analog of the sum
rule ~7!, if E1 andE2 are related by

E1~ t2t2!exp~2iv1t2!52E2~ t2t1!exp~2iv1t1!,
~14!

the equations for the optical fieldsE1 and2E2 are identical
and therefore synchronized solutions~12! are possible. From
Eqs. ~10! and ~11! one also can easily derive the existen
condition for the complete synchronization manifoldE1(t)
5E2(t): k15k21k3 , which is also the existence conditio
for the anticipating synchronization manifoldE15E2,t12t2

.

We recall that in anticipating synchronization we requiret1
.t2 , and in complete synchronization we havet15t2 .
Comparing ‘‘conventional’’ and inverse anticipating synchr
nization manifolds written explicitly for the electric field am
plitude and phase we notice that a phase shiftp appears in
the case of inverse anticipating chaos synchronization.

Finally we demonstrate that the concept of cascaded s
chronization provides increased anticipation times for
verse anticipating chaos synchronization phenomenon.
idea of using cascaded synchronization to increase antic
tion times was proposed by Voss@13# in the context of an-
ticipating synchronization between coupled ordinary diffe
ential equation systems. We consider the situation when
driven system in Eq.~4! is a chain of three response system
y, z, andu: dx/dt52ax2b sinxt ; dy/dt52ay1b sinx;
dz/dt52az2b siny; du/dt52au2b sinz. The result is

FIG. 3. Numerical simulation of cascaded Ikeda equations: t
series of the driverx(t) and driven systemu(t). After transients,
the driven system’s trajectoryu(t) is inverted and shifted three tim
units to the left. The parameters of the Ikeda model are the sam
in Fig. 1. Dimensionless units.
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obtained by undertaking an investigation of the error dyna
ics D5x2(2z2t)5x1z2t : dD/dt52aD2b(sinxt

1siny2t). Given that inverse anticipating synchronizatio
betweenx andy has already taken place,x52yt then with
xt52y2t we arrive at the error dynamics:dD/dt52aD.
From which it is found that the driven systemz synchronizes
with the driver systemx with the anticipation time 2t : x
52z2t . Thus by adding the new driven system to Eq.~4!
the inverse anticipation time is doubled. In the case of th
driven systems it is straightforward to find thatx52u3t is
the inverse anticipating synchronization manifold with t
anticipation time 3t. These results are in excellent agreem
with numerics. Figure 3 shows numerical simulation of fo
coupled Ikeda equations: the time series of the driverx(t)
and driven systemu(t) are presented. After transients, th
driven system’s trajectoryu(t) is inverted and shifted thre
time units to the left, thus anticipating the driverx(t). It is
,
,
r
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straightforward to show that cascaded inverse anticipa
synchronization also allows one to increase the anticipa
times in the case of coupled systems with two characteri
delays thereby providing large anticipating times in a wi
class of nonlinear systems—including chaotic external ca
lasers.

To summarize, we have reported a different type of ch
synchronization: inverse anticipating synchronization, wh
a time-delay chaotic system can drive another system in s
a way that the driven system anticipates the driver by s
chronizing with its inverse future state. This form of cha
synchronization offers more opportunities for reducing t
unpredictability of chaotic dynamics. The utility of the ap
proach is significantly enhanced by the increased inverse
ticipation times, which can be obtained in cascaded sl
systems.
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