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Inverse anticipating chaos synchronization

E. M. Shahverdie?, S. Sivaprakasam, and K. A. Shore
School of Informatics, University of Wales, Bangor, Dean Street, Bangor, LL57 1UT, Wales, United Kingdom
(Received 6 February 2002; published 19 July 2002

We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic
system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in
delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded
time-delay systems.
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Chaos synchronizatiofi] is of fundamental importance synchronizes with a driven system
in a variety of complex physical, chemical, and biological
systems[2]. Synchronization of coupled chaotic systems dy
eliminates some degrees of freedom of the coupled system dat —ay—f(x) @
and so produces a significant reduction of complexity. The
occurrence of synchronization between elements of a larggy, the inverse anticipating synchronization manifold
system allows significant simplification of computational and
theoretical analysis of the system. X=—y,. 3)
Time-delayed systems are ubiquitous in nature, technol- 7
ogy, and society because of finite signal transmission timegy, order to obtain this result we introduce the error signal:
switching speeds, and memory effe¢®]. Therefore the =x—(—y,)=x+y,. Then from Eqgs(1) and(2) it follows

study of chaos synchronization in these systems is of consi hatdA/dt= — aA. In many representative cases, chaos syn-

erable practical significance. Because of their ability to gen- o . )
erate high-dimensional chaos, time-delay systems are goa(;]éwomzatlon can be understood from the existence of a glo

candidates for secure communications based on chaos sy gl Lyapunov function OT the elrrozr S|gna[I§,8:_|. By analyz-
chronization[4]. Time-delay systems can also be considered"d the Lyapunov functiorL =3A" we obtain that fora
as a special case of spatio-temporal systEis >0 the_ inverse ant|C|pat_|ng synchron|zat|or_1 manifold
In this paper we report a different type of synchronization:= ~ Y- iS globally attracting and asymptotically stable.
inverse anticipating synchronization, where a time-delayed Nfoughout this paper, to enhance the accessibility of our
chaotic systenx drives another systemin such a way that Presentation, we conf_lrje ourselves to the 'demonstratlon of
the driven system anticipates the driver by synchronizing tdrinciples using specific examples from different areas of
its inverse future statex(t)=—y.=—y(t—7) or equiva- Physics. o S S
lently y(t) = —x(t+ 7) with 7>0. Anticipating synchroniza- First W(? consider inverse anticipating .synchrpnlzatlon In
tion x=y, was discovered by Vog§] and has recently been the following coupled lkeda systems with a single delay
the subject of experimental demonstration using externdiMme:
cavity laser diode$7]. A key result of the present paper is
the dgrn_onstration of an inti_mate ponnection .between the_se %: — ax— Bsinx,, d_y = —ay+ Bsinx, (4)
two distinct phenomena which arise when different condi- dt dt
tions are met. The explicit prescription of the conditions for
observing these distinct phenomena offers, first of all, inwhere @>0, >0. Anticipating synchronization in the
triguing opportunities for constructive intervention in the dy- coupled Ikeda systems was studied &). The lkeda model
namical evolution of chaotic systems by switching betweerplays an important role in electronics and physiological stud-
the two forms of synchronization. ies[6]. This model was introduced to describe the dynamics
We investigate inverse anticipating synchronization be-0f an optical bistable resonator and is well known for delay-
tween two coupled systems for the cases of a single de|aiYIdUC€d chaotic behavior, e.d6,9] and references therein.
time and two characteristic delay times. In the latter case th€hysicallyx is the phase lag of the electric field across the
delay time in the coupling is different from the feedbackresonator and thus may clearly assume both positive and

delay time within the coupled systems themselves. negative valuesy is the relaxation coefficieng is the laser
We define inverse anticipating synchronization as follows intensity injected into the systemis the round-trip time of
The driver system the light in the resonator. Using the error dynamics approach

given above one finds that= —y . is the inverse anticipating
chaos synchronization manifold. Numerical simulations fully
support the analytical approach. The driver system behaves
chaotically for, e.g.7=1, «=5, B=20. We perform simu-
lations of Eq.(4) by employing an Runge-Kutta-Fehlberg

*Permanent address: Institute of Physics, 370143 Baku, Azeralgorithm[10]. Figure 1 shows the time series of the driver
baijan. X(t) (solid line) and driven systeny(t) (dotted ling.

dx
m:—aXJrf(XT) (1
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FIG. 1. Numerical simulation of two coupled lkeda equations:
i i f th i lid li i . :
time series of the drivex(t) (solid line) and driven systeny(t) — 18, my=—3, my=15, and forr,=2 andr,—1: time series of

dotted ling. After transientgabout one time unif the driven sys- . oo . )

( ) . 9 i & . . it . y the driver x(t) (solid line) and driven systeny(t) (dotted ling.
tem’s trajectory is inverted and shifted one time unit to the left. TheAft i ients. the dri tem’s traiect C ted and
parameters of the lkeda model are 1, =5, =20. Dimension- er ransients, the driven systems Trajectory 1S nverted an
less units. shifted 7, — 7,=1 time unit to the left. Dimensionless units.

FIG. 2. Numerical simulation of systerf6) for =5, m;

Inverse anticipating chaos synchronization can also pd he sufficient stability condition of the trivial __solutioﬁ
found in systems with two characteristic delay times: a time=0 Of Eq.(8) can be found from the Krasovskii-Lyapunov
delay 7, in the coupled systems themselves and a couplingunctional approach for the time-delay systef8s12,6: «
delay timer, between the systems. Consider the following=|Me|. The condition(7) can be considered as the existence
unidirectionally coupled drivefx) and responséy) systems condition forinverse anticipating chaos synchronizatitor

where feedback and coupling delagsand 7, are different.  the unidirectionally coupled modified Ikeda model. It is
noted that the analogous existence conditionafaticipating

dx _ d _ chaos synchronizatiofll] x=y, _. is my=my+m;. We
quo X BsInX, T T aytgsink,,. (5)  also derive the sufficient stability condition for anticipating
synchronizatione>|m,|, which coincides with the sufficient
We find thatx=—y is the inverse anticipating chaos Stability condition for inverse anticipating synchronization.
Tl_7'2

o ; ; e ; Stability conditions found above only hold locally, as Eq. (8)
synchronization manifold for Eq5) with anticipating time X o o i
ri— 7, (<), as the ermod=x+y, . obeys the fol- is valid for smallA; in other words the trivial solutiomA

. : =0 of Eq. (8) is only locally stableA stability condition
lowing dynamics:dA/dt=—aA. N _derived from the Krasovskii-Lyapunov approach is a suffi-
As another example with two characteristic delay timeSgjent condition: it assures synchronization for a coupling rate
we consider the following delay-coupled Ikeda mofH]: (syrength estimated from the stability condition, but does not
forbid the possibility of synchronization with smaller cou-

d_X: — ax+my sinx, , pling strengths_{12]. _ _ o
dt ! We would like to emphasize that practical realization of
inverse anticipating synchronization in coupled lkeda sys-
dy ) ) tems(6) is rather easily achieved, i.e., the parameters values,
at eyt mesiny, +mgsinx,, ©®  e.g.,@=5 m,=—18,m,=—3, my= 15 satisfy both the ex-

istencem,=m;+m; and stability «>|m,| conditions for
wherem,, m,, andms are constants. One finds that under € inverse anticipating synchronization manifold. Figure 2
the condition shows numerical simulations of syste(®) for the above-
mentioned values of parameters, and for=2 and r,=1:
M, =My + M, (7 the time series of the drive«(t) (solid line) and driven sys-
temy(t) (dotted ling.
Egs. (6) also admit the inverse anticipating synchronization Ve also point out that the existence condition for inverse
manifold x=—y.. . This follows from the dynamics of an_t|C|pat|ng synphromzanon_ in sy_ste(m) commdgs vy|th _the
the errorA=x+y1 2 existence cc_)nd|t|on for anticipating _synchronlzanon in the
! system obtained from E@6) by replacingy by —y and vice
versa. In other words, both syste{® and the system ob-
®) tained from it after inversiorty by —y or x by —x) exhibit
both inverse, and “conventional” anticipating synchroniza-

dA

q aA+m, cosleA _
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tion under the indicated existence conditions. 4 —— T
Next we consider complete synchronization I

X=y 9

between master and slave systefBs Let us assumer;
=7,. Then one finds that under the condition=m,+m;s ]
Egs. (6) also admit the complete synchronization manifold 5 4|
x=Yy. This conclusion follows from the dynamics of the er- x }
ror A=x—y: dA/dt=—aA+(m;—mz—my)sinx, valid F
for small A. Thus, the trivial solution of this equatioa
=0 is only locally stable for positiver. We observe, there- i
fore, that by changing the feedback, and/or the coupling |
strengths and feedback delay time one can make transition
between anticipating, inverse anticipating, and complete syn- -4 L
chronizations. The significance of this opportunity is under-
lined by the relative ease for practical implementation of the
relevant phenomena using such conveniently operated time- FIG. 3. Numerical simulation of cascaded Ikeda equations: time
delayed systems as external cavity laser diodes. Studying tieries of the drivex(t) and driven systenu(t). After transients,
possibility of inverse anticipating synchronization in chaoticthe driven system’s trajectory(t) is inverted and shifted three time
semiconductor lasers with optical feedback is given addednits to the left. The parameters of the Ikeda model are the same as
relevance due to the potential for application in secure optiin Fig. 1. Dimensionless units.
cal communication$4].

External cavity laser diodes offer an opportunity for ac-times. For identical lasers, inverse anticipating synchroniza-
cessing inverse anticipating synchronization, which may béion solutions of Eqs(10) and (11)
manifested in an inversion of the phase of the laser optical
field. An appropriate framework for treating the evolution of Ei=—Ezr—rp (12)
the electric field of external cavity laser diodes is provided
by the widely utilized Lang-Kobayashi equations, see, e.g.exist if
[11]. Suppose that a master laser is described by the equa-

tions kp=kq+ks. (13
dE; Indeed under conditiofiL3), which is the analog of the sum
ar = a1+ (G DE(D) +keEg(t—7) rule (7), if E; andE, are related by

Xexp—twy7y), Ei(t—m)exp—wwy7mp) = — Ex(t— ) eXp( — w1 7y),

(14
; 2
ﬂ = M (100  the equations for the optical fields, and —E, are identical
dt Tn1 and therefore synchronized solutiofi®) are possible. From
qus.(lO) and (11) one also can easily derive the existence
condition for the complete synchronization manifdig(t)
=E,(t): ky=k,+Kks, which is also the existence condition

and is coupled unidirectionally with a slave laser describe
by the equations

dE, for the anticipating synchronization manifolgy=E;, ;. ...
gt = 721t @) (Go— DE(t) +koEp(t— ) We recall that in anticipating synchronization we requife
>r1,, and in complete synchronization we have= 7.
xXexpl— 1wy 7)) +KEq(t— 7o) eXp( — 1wy 72), Comparing “conventional” and inverse anticipating synchro-
nization manifolds written explicitly for the electric field am-
dN;  jo—No—Go|Ey|? 1y  Plitude and phase we notice that a phase shitippears in
dt Tho ' (1) the case of inverse anticipating chaos synchronization.

Finally we demonstrate that the concept of cascaded syn-
where E; , are the slowly varying complex fields for the chronization provides increased anticipation times for in-
master and slave lasers, respectivély, are the normalized verse anticipating chaos synchronization phenomenon. The
carrier densitiesy; , are the cavity lossesy, , are the line- idea of using cascaded synchronization to increase anticipa-
width enhancement factor€3, , are the optical gainsk; ,  tion times was proposed by Vo§&3] in the context of an-
are the feedback levelk; is the coupling ratew; is the ticipating synchronization between coupled ordinary differ-
optical frequency without feedback; is the round-trip time  ential equation systems. We consider the situation when the
in the external cavityr, is the time of flight from the master driven system in Eq(4) is a chain of three response systems
laser to the slave laser, i.e., the coupling delay tijjg;are vy, z, andu: dx/dt=—ax— Bsinx_; dy/dt=—ay+ g8 sinx;
the normalized injection currentsy,, ,, are the carrier life- dz/dt=—az— Bsiny; du/dt=—au—Bsinz. The result is
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obtained by undertaking an investigation of the error dynamstraightforward to show that cascaded inverse anticipating
ics  A=X—(—12p,)=X+2,,: dA/dt=—aA—B(sinx,  Synchronization also allows one to increase the anticipating
+siny,,). Given that inverse anticipating synchronization imes in the case of coupled systems with two characteristic

betweenx andy has already taken place= —y. then with delays thereby providing large anticipating times in a wide
X.= —y,. We arrive at the error dynami’csm/at— oA class of nonlinear systems—including chaotic external cavity
T 27 - .

From which it is found that the driven systensynchronizes Ias'I(?cr)séummarize, we have reported a different type of chaos
with the driver systemx with the anticipation time 2: X gynchronization: inverse anticipating synchronization, where
= —2,,. Thus by adding the new driven system to E4).  a time-delay chaotic system can drive another system in such
the inverse anticipation time is doubled. In the case of thre@ way that the driven system anticipates the driver by syn-
driven systems it is straightforward to find that —uj,. is  chronizing with its inverse future state. This form of chaos
the inverse anticipating synchronization manifold with thesynchronization offers more opportunities for reducing the
anticipation time 3. These results are in excellent agreementunpredictability of chaotic dynamics. The utility of the ap-
with numerics. Figure 3 shows numerical simulation of fourProach is significantly enhanced by the increased inverse an-
coupled Ikeda equations: the time series of the drii@) ticipation times, which can be obtained in cascaded slave
and driven systenu(t) are presented. After transients, the systems.

driven system’s trajectory(t) is inverted and shifted three This work was supported by UK EPSRC under Grant
time units to the left, thus anticipating the drive(t). It is Nos. GR/R22568/01 and GR/N63093/01.
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